The post What is wave function collapse? Is it a physical event? appeared first on Quantum Physics Lady.

]]>To continue on with the view that the wave function is a piece of math: a wave function is, first of all, a function—just like the functions in algebra—a very common type of equation. The reason that physicists call it a “wave function” is that it’s an equation that when graphed, looks like waves. The accompanying image shows a graph of a particular wave function at a particular moment in time. It graphs as waves with six three-dimensional peaks:

This wave function could describe an electron in a box, possibly imprisoned by magnetic fields. The graph tells us the likelihood of detecting the electron in any particular position in the box. It gives us a set of probabilities as to the likely position of the electron when detected. We’ll need to square the amplitude (wave height) that we’ve calculated for each position to find out the probability of detecting the electron in that position.

For this graph, the calculation of the wave function tells us that the electron has an equal probability of being detected in six different positions (A, B, C, D, E, or F) and a negligible probability of being detected elsewhere.

Upon detection of the electron, the probabilities calculated by the wave function instantaneously convert to a 100% probability for the position in which the electron is detected and 0% everywhere else. This is the “collapse of the wave function.” All the probabilities collapse down to one position.

The upcoming 2-minute video depicts this collapse in the Double Slit Experiment. First it shows in the “Particle” segment how an everyday object like a pebble would act (still image on left). Then it shows in the “Wave” segment how an ordinary wave like a water wave would act (still image on right)Then, it shows in the third “Quantum Object” segment,

Click here to watch the 2-minute video of the collapse of the wave function.

The electron collapses down to a tiny physical particle, all right. But, according to the in the Copenhagen Interpretation, there was never any physical electron wave. The waviness of the electron prior to detection was never physical in the sense that tables and chairs are physical. If there is a wavy electron, it’s no more physical than a mathematical expression.

But here’s an alternative interpretation, it’s a waviness is in an underlying sub-level of reality. That is, it’s wavy in Quantumland where the rules of quantum mechanics apply. Not in our level of physical reality. This is the Transactional Interpretation as developed by Dr. Ruth Kastner (*Understanding Our Unseen Reality*).

Why isn’t the waviness of the electron physical in the sense that tables and chairs are physical? Because the waviness described by the wave function is no more than probabilities that something will be detected. The wave function is **not **telling us where something is. It’s telling us what’s possible and how likely any particular possibility is. And there are other non-physical aspects of this waviness. Read the next section on this if you’re familiar with the concept of imaginary numbers.

(Skip this section if math isn’t your thing. It isn’t essential to the basic concept of this article.) Here’s something else to consider. You know the imaginary number **i** and how it doesn’t describe anything in the physical universe? You’re never going to measure a table leg that is** i** inches tall. That’s because **i** means the square root of negative **1**. What number squared equals **-1**? There is no such number. So, **-1** has no square root. But we go ahead and call it **i** and happily calculate with it. We’re just never going to find a table leg or anything else that measures **i** inches long.

Well, here’s the punchline. Many wave functions calculate wave amplitudes which are **i** big. The implication is that these wave functions are not describing anything in our physical reality. So, the waviness of the electron prior to detection can be described mathematically, but is not a physical thing in our physical universe. It’s either just math or it’s something in an underlying reality that I like to call “Quantumland.”

In the 1920’s and ’30’s, the early days of quantum mechanics, a number of the founding fathers thought of the wave function as an actual wave. Erwin Shrodinger was in this camp. So, when reading the early literature on quantum mechanics, one will sometimes run across statements that the wave function describes a “probability wave,” with the implication that it’s a physical thing. However, few physicists today subscribe to this view. The interpretation that I’ve followed in this article is the current version of the Copenhagen Interpretation, the one usually taught in universities.

About 15 other interpretations of quantum mechanics have developed in the century since the Copenhagen Interpretation was first developed. Some of these do not include the concept of wave function collapse. Physicists who favor the De Broglie-Bohm Interpretation would say that there’s always an electron wave and it’s always guiding an electron particle: the wave does not suddenly collapse down to a particle. Physicists who favor the Many Worlds Interpretation would also say that there’s no wave function collapse.

* The probability densities are the squares of the wave amplitudes, as calculated by the wave function. The wave function yields the distribution of probability densities for detecting the electron in any particular position.

The post What is wave function collapse? Is it a physical event? appeared first on Quantum Physics Lady.

]]>The post Are electrons waves or particles? appeared first on Quantum Physics Lady.

]]>“Particle” shows ordinary particles, let’s say pebbles. Particles are separate individual little things that at any one moment are in a tiny, very localized position. So, individual pebbles shoot through one slit or the other. Then, the pebbles hit the detection screen.

Here’s where the video goes off the rails. It shows a pattern on the detection screen of random dots all over the screen. Your common sense would tell you that the pebbles should form two clumps on the detection screen, one behind each slit. Real experiments show that your common sense is correct. Figure (1) by Fermilab is a more accurate depiction of what the detection screen should look like.

“Wave,” in the video, shows an ordinary wave, let’s say a water wave. The water wave is spread out, so it goes through both slits. On the far side of the barrier, two waves emerge, one from each slit. The two waves interfere with each other. They form the crisscross pattern of ripples that we see if we throw two stones into a pond. This crisscross

pattern of ripples hits the detection screen and forms a striped pattern.Figure (2) clearly shows how a water wave creates the crisscross “interference pattern” and marks the detection screen with a striped pattern. This is just like in the video. This striping is the signature pattern of waves interacting. When physicists see this pattern, they think “waves.”

To summarize, here are the differences from particle behavior: the wave is spread-out; goes through both slits, not just one or the other; forms two interacting waves on the far side of the barrier; and forms a striped pattern on the detection screen.

“Quantum object” shows a subatomic particle, for example, our electron. It doesn’t act at all like an ordinary particle such as a pebble. At first, it acts more like a wave. It’s spread out and goes through both slits. It emerges as two different waves on the far side of the barrier, and these interfere with each other. The two waves form the same crisscross pattern that ordinary waves form.

But upon hitting the detection screen, the wave “collapses.” The electron wave hits the screen in one tiny spot as if it were a particle. The experiment is run over and over. One at a time, electrons flow wave-like through the barrier and collapse at the detection screen, each time hitting one tiny spot, that is, suddenly turning into a particle. Over time, a pattern on the detection screen emerges. It’s the striped pattern—the signature pattern of two waves interacting! Somehow the particles which hit the screen “know” where to land on the detection screen such that over time, they collectively seem to show the influence of the two interacting waves.

Even though the electron acts in certain ways like a wave, there are significant differences between the wave of a quantum particle and an ordinary wave like a water wave. The electron type-wave is called a “quantum wave.” An ordinary wave is called a “classical wave.” The mathematical equations which describe the properties of a quantum wave and a classical wave are very different. While quantum waves share some similarities of behavior with classical waves, for example, creating a striped pattern on the detection screen, quantum waves also act significantly differently. Quantum waves and classical waves differ in both their mathematical descriptions and in their behavior.

Here’s a brief listing of differences between a quantum wave and a classical wave (for more detail see the article in this encyclopedia on wave):

- As shown in the video, the quantum wave collapses when it hits the detection screen and lands on it as a particle. This is called the “collapse of the wave function.” An ordinary wave retains its wave nature when it hits the detection screen.
- The amplitude of a quantum wave is proportional to the probability that the quantum particle will be detected in a specific position. In contrast, the amplitude of a classical wave is proportional to the wave’s strength.
- The equation of a quantum wave can include imaginary numbers. These are numbers that include the square root of negative 1. As no number times itself is a negative number, imaginary numbers do not refer to anything that has physical reality. The equations for classical waves do not include imaginary numbers and describe physically real things.
- It is when an electron is in the quantum wave state, rather than in its particle state, that it displays quantum weirdness: superposition (being in more than one place at the same time), entanglement (behaving in an instantaneously correlated manner with an electron as far as across the universe), quantum tunneling (appearing on the other side of a barrier despite having insufficient energy to cross the barrier), and other weirdnesses. Classical waves, of course, do none of these things.

*The Transactional Interpretation is explained in lay terms without math in Ruth E. Kastner, *Understanding Our Unseen Reality, Solving Quantum Riddles*; Imperial College Press, 2015, London.

How does the electron enter our physical reality? It interacts with something physical that is made up of lots of particles—a “macroscopic object” like a detection screen. Upon interacting with the screen, it’s suddenly a particle. This is called the “collapse of the wave function.” Since, the electron always becomes a particle as soon as it interacts with a macroscopic object, we can never observe it in its wavy state. We’re like King Midas. He could never feel his daughter’s soft hand because she turns to gold the moment that he touches her. We can never observe the wavy state of an electron because the wave function collapses to a particle when we interact with it sufficiently to perceive it.

Figure (3) depicts Quantumland on the left, the collapse of the wave function, and the resultant objects in everyday spacetime on the right. This depiction is a gross simplification because the collapse from wave to particle does not occur at the scale of entire objects like homes and picnicking families. Instead electrons, quarks, and other quantum particles are continually moving from their wavy states, interacting with others, and collapsing to particles. When they collapse, the entire atom and molecule collapses with them. Then, quantum particles revert to their wavy state, collapse again, and on and on. So, at any one moment, many of the atoms and molecules of an object are in their wavy state and many are collapsed down to particles.

This brings us to the final part of the accompanying video, “Add an Observer.” This part of the video shows the electron wave approaching the barrier. But this time, there’s a detector at the barrier watching which slit the electron goes through. This could be a human with Superman vision or a Geiger counter or another device. The device interacts with the electron sufficiently to determine which slit, so the electron collapses down to a particle and goes through only one slit.

Once past the barrier, the electron, freed from interaction, reverts to its wavy state. Upon interaction with the detection screen, it again collapses down to a particle and lands as a tiny localized dot. Again, the video incorrectly shows that after repeated runs of the experiment, random dots cover the detection screen with no particular pattern. Experimental results show that the resulting pattern on the detection screen is, instead, two clumps as shown in Figure (1).

The role of consciousness in the collapse of the wave function has had a controversial history. In the early days of development of quantum mechanics, many of the founding fathers of the field contemplated the possibility that consciousness played a role in collapsing the wave function. Over time, this view was rejected. Considerable work was done starting in the 1950’s on the theory of decoherence. This is the theory that interaction with macroscopic particles cause collapse of the wave function. While this is a well-accepted theory, experiments in recent years also point to the possibility that consciousness can also cause collapse of the wave function. For further discussion, see the article in this encyclopedia collapse of the wave function.

In summary, the electron is definitely a particle when it hits the detection screen. And at other times, it’s a wave. But it’s not a physical wave like a water wave or sound wave. It’s a wave that follows the laws of quantum mechanics.

The post Are electrons waves or particles? appeared first on Quantum Physics Lady.

]]>The post What is the difference between a photon and a quantum? appeared first on Quantum Physics Lady.

]]>A quantum is the tiniest particle possible of a particular substance. For example, in the case of an electron, it’s the tiniest particle possible of negatively-charged matter. Just as a photon is the tiniest particle possible of light.

This description is saying something interesting—Nature does not allow us to cut matter and energy into smaller pieces indefinitely. Let’s say that we could cut a rock down into tiny grains of sand, but there were some natural law that a grain of sand is as small as we can get. If this were true, a grain of sand would be a quantum of rock. But, of course, we can cut a grain of sand into ever smaller grains. Only when we get down to the level of electrons and other subatomic particles, does Nature call a halt to the cutting. That’s when we hit the quantum level.

In the case of light, a photon, a quantum of light, is as small as Nature allows. A single photon of light is too dim for a human being to see. It takes a few photons for us to detect light. Frogs, however, are able to see a single photon.In summary, a photon is the tiniest possible particle of light, a quantum of light. A quantum, on the other hand, is the tiniest possible particle of **any** substance at the subatomic level and includes, for example, electrons and neutrinos. If this answers your question, no need to read any further. If you want to know more about photons and quanta, read on.

To see how light can be divided into photons, it’s necessary to understand a bit more about light. Light travels as a wave. Specifically, it travels as an electromagnetic wave. An electromagnetic wave is an electrical wave and a magnetic wave traveling together and interacting.

As the electrical wave expands and contracts (shown in red in this image), it gives rise to a magnetic wave (blue). Then, the magnetic wave expands and contracts, giving rise an electrical wave, and on and on. This video shows the dance of electrical and magnetic waves giving rise to each other: https://www.youtube.com/watch?v=1SQV9kBN_b4

Physicists call all electromagnetic waves “light.” This includes visible light, the kind that we see with our eyes, but also X-rays, ultraviolet rays, infrared, microwaves, radio waves (which carry TV and radio signals), and others. The difference between the various types of electromagnetic waves is their wavelength (shown in image below).

So, the term “photon” can mean a particle of visible light but also a particle associated with X-rays, microwaves, or any other part of the electromagnetic spectrum.When light, that is, an electromagnetic wave, strikes an object, it immediately collapses into tiny bits or particles of energy. (Please don’t take this literally; it’s meant only metaphorically.*) Each of these particles is a photon. It’s as if an ocean wave hits a rock and shatters into a gazillion tiny droplets. Each “droplet” of the light wave is a photon, and each carries a bit of energy. If a wave of visible light were to strike a piece of photographic film, we would be able to see the traces of all the photons which struck it. Each photon creates a tiny dot, a bit of the photo, usually a small fraction of a pixel. Together, the photons form the image.

Waves, including light waves, are spread out in space. When it strikes the film, the light is no longer acting as a wave; it’s acting as a particle. Particles differ from waves in that they are localized, that is, they have a small and definite position.

In summary, light acts as both a wave and a particle. When traveling, it’s an electromagnetic wave. But upon striking objects, it acts as a particle. While “photon” is the name given to light only when it acts as a particle, people may neglect the distinction. They often use the term “photon” for light at all times, whether it’s in wave form or particle form.

As a note, the term “photon” comes from the ancient Greek *photos*, which means “light” and the ending *-on*, which means “a particle.” “Photon” means literally “light particle.”

The general term for all types of subatomic particles which are of the smallest possible size allowed by Nature is “quanta.” “Quanta” is the plural; “quantum” is the singular. The term “quantum” comes from the Latin *quantus* which means “how much.” Electrons are the quanta associated with electron waves; neutrinos are the quanta associated with neutrino waves; etc. Just like photons, electrons cannot be further divided into something smaller, nor can neutrinos.

In its original meaning, a “quantum” is the tiniest particle of a substance that Nature allows. However, often people call any tiny particle that follows the laws of quantum physics a “quantum” even when it’s not the smallest allowed by Nature.

*Footnotes*

*Light waves don’t physically shatter when they hit objects. They interact with the objects and due to the laws of quantum physics, the waves transform into tiny energy-bearing particles, that is, photons.

The physical nature of waves at the subatomic level is somewhat mysterious. It’s still under debate due, in part, to the odd ways in which these waves behave in experiments. One view, for example, is that they are no more than mathematical expressions in the form of a wave equation which somehow create physical effects (!?). But this is diving deeper into quantum physics than is useful here.

The post What is the difference between a photon and a quantum? appeared first on Quantum Physics Lady.

]]>The post Why does the Born Rule predict quantum probabilities? appeared first on Quantum Physics Lady.

]]>First, the mathematical explanation: Let’s take the example of the Double Slit Experiment. A laser shoots photons one-at-a-time through the two slits of a

screen towards a photographic plate. The wave function is the equation that describes the behavior of the photon. The amplitudes calculated for the wave by the wave function are proportional to the probability of the photon being detected in any particular position on the photographic plate.The mathematical expressions for the wave amplitudes often include complex numbers (numbers that include the square root of negative 1). We cannot visualize such a number because what number multiplied times itself equals negative 1? There is no such number. We label this non-number as **i **and just don’t try to imagine what amount **i **really represents. Even though **i** does not describe anything that we’re familiar with in the physical universe, both mathematicians and physicists have found it useful to work equations which include** i**, that is, complex numbers.

But returning to the wave function in the Copenhagen Interpretation. Max Born (1882-1970) was the quantum physicist who first realized that the amplitude of the quantum wave predicts the probability of detecting a particle in a particular position. But this creates a problem. What if the amplitude includes a complex number?

A probability cannot be expressed using complex numbers. Probabilities are expressed as positive numbers ranging from 0% to 100%. That is, we can say that there’s a 50% chance when tossing a coin of getting heads. Or a 0% chance that every moment of the day will be fun. And a 100% chance that a human being will eventually die. But to say that the chances of an event are the square root of negative 1 makes no sense.

Born solved the problem by multiplying the amplitude of the wave by its complex conjugate. This squares the square root of negative 1, yielding simply negative 1. The result is probabilities calculated by the wave function are quite nice. They range from 0% to 100%.This calculation is the Born Rule. Experimental results show that the Born Rule is accurate in calculating quantum behavior. So, not only does the rule cancel out the troublesome complex numbers, it accords with empirical results. The Born Rule is an integral part of the Copenhagen Interpretation.

However, the Born Rule does not explain what is happening in the physical universe that requires that we multiply the wave amplitude by its complex conjugate. Nor does any other part of the Copenhagen Interpretation provide such an explanation. The Transactional Interpretation does. While it would be too lengthy to fully explain this interpretation here, an example gives a taste:

Let’s say take a look again at the Double Slit Experiment with a laser emitting a single photon towards a photographic plate. Until it arrives at the photographic plate, it’s a quantum wave that physicists can calculate a wave function for. The wave function identifies the possible positions where the quantum wave could deposit its energy on the photographic plate. So far, this is like the Copenhagen Interpretation. But the Transactional Interpretation adds something new. It says that if the photon is to land on the photographic plate, an electron in the plate must take action to absorb it. Electrons in the plate must send out their own waves. When the emitting wave and the receiving wave interact, the photon transfers energy to the electron, and takes its place in physical reality at a position on the plate.

The wave function of the absorbing electron in the plate has an amplitude that fits well with the amplitude of the photon: it’s the complex conjugate of the photon’s amplitude.

But why multiply the two amplitudes? This is how we find the probability of two events occurring, in this case both the photon heading towards a particular position on the plate and an electron in that position absorbing it. When we calculate the probability of any two events, we multiply the two probabilities. For example, the chances of a baby being born a girl with brown eyes is: 1) the probability of being a girl (about 48%) **times** (2) the probability any baby having brown eyes (about 80%). We multiply 48% times 80% and get 38%. There’s a 38% chance that a baby born anywhere in the world will be a girl with brown eyes.

The emitting wave and the absorbing wave have to interact if the photon is to land in any particular position. We multiply the probability of the photon landing in a particular position (the complex number describing the amplitude) times the amplitude of the receiving wave at that position on the plate (the complex conjugate).

The Transactional Interpretation is based on Absorber Theory developed by Richard Feynman and John Wheeler in the late 1930’s. It was fully developed as an interpretation of quantum mechanics by John Cramer in the 1980’s and further developed by Ruth E. Kastner. Kastner has written technical papers on the Transactional Interpretation and also a book for laypeople, *Understanding Our Unseen Reality*. I highly recommend the book because it provides a coherent and understandable explanation of the physical meaning quantum mechanics.

The post Why does the Born Rule predict quantum probabilities? appeared first on Quantum Physics Lady.

]]>The post How do we know a quantum particle is in a superposition if detecting the particle will destroy the superposition? appeared first on Quantum Physics Lady.

]]>The post How do we know a quantum particle is in a superposition if detecting the particle will destroy the superposition? appeared first on Quantum Physics Lady.

]]>The post What are some good online resources that can help me understand physics better? appeared first on Quantum Physics Lady.

]]>When I didn’t understand something in a particular lesson, I found videos on Youtube. I typed the subject into the Youtube search bar, for example, “inertia.” Then, I just started watching videos until I finally got it.

It’s important to understand all the jargon as it comes up. When terms came up I wasn’t sure of, like “mass,” I watched Youtube videos on the subject and/or googled the physics meaning. When googling, I often asked for images. Finding visuals really helps.

I’m writing definitions of physics terms in an on-line encyclopedia. It focuses on quantum physics, but many of the terms, like acceleration, are shared with classical physics. Classical physics is the first physics that you learn on websites like the PhysicsClassroom and KhanAcademy.org.

The post What are some good online resources that can help me understand physics better? appeared first on Quantum Physics Lady.

]]>The post How do I get started in learning quantum mechanics? appeared first on Quantum Physics Lady.

]]>For more of a light once-over, documentaries hosted by Brian Greene on Youtube are excellent. He’s a quantum physicist and a noted science writer.

Good beginning book on quantum mechanics is *Fields of Color* by Rodney Brooks.

I’m assuming here that you already know the basics of Newtonian physics. If not, study these first. The Physics Classroom is an excellent free on-line course on Newtonian physics. It’s step-by-step and gives practice problems. Khan Academy also has excellent free lessons on Newtonian physics.

Whenever I didn’t understand something in a particular video or book on quantum mechanics, I found videos or on-line articles about that particular thing until I had more understanding of it.

I’m writing definitions of quantum physics jargon for people who are interested in quantum physics but don’t want to dive into the math of it. It’s the definitions and the illustrations and examples that I wish I had when I was first watching these videos and floundering around. I’m hoping that it will help others.

The post How do I get started in learning quantum mechanics? appeared first on Quantum Physics Lady.

]]>The post Can quantum mechanics be understood? Does it make logical sense? appeared first on Quantum Physics Lady.

]]>However, quantum mechanics (QM) does not fit with the assumptions and principles of classical physics (physics prior to 1900 that we learned in high school). QM is the description of the quantum world. Classical physics is the description of the macroscopic world—the world of tables, chairs, apples, etc. The two worlds are described by two different systems of assumptions, principles, equations, and empirical data.

If we attempt to view the quantum world while retaining classical assumptions and principles, the quantum world seems full of paradoxes. For example, classical physics is based on the unspoken assumption that when an object changes position from Point A to Point B, it traverses the distance in between. This assumption is violated in the double slit experiment of quantum mechanics (QM). Another assumption of classical physics is that if one knows the initial conditions of a system, one can calculate its evolution through time. Due to the true randomness in the behavior of individual quantum particles, QM violates this assumption.

*Classical physics tells us that if we apply a specific force to a billiard ball, we can predict exactly where it will roll. This is called the billiard ball model of physics.*

Neither system is particularly intuitive. Newton’s First Law isn’t intuitive: no forces are needed to maintain an object at a constant velocity. Or gravity – Newtonian gravity is action-at-a-distance. Neither Newton nor we are able to describe the underlying nature of physical reality such that action-at-a-distance occurs.

But the principles of classical physics fit together into a self-consistent logical system. Classical physics was also consistent with experimental data until the late 1800’s. That’s when scientists started investigating atoms and the interiors of atoms. And, that’s when they need QM.

QM can be seen as describing a sublevel of reality which operates on different assumptions from those of the macroscopic world.

** The green film represents ordinary reality as we perceive it with our senses. The red grid represents the quantum world, a sublevel to our reality. A wave travels through the quantum world (red grid) and creates a particle (dot in the green film colored orange or blue) in our perceived reality. [**Image source: stills from Fermilab video by Dr. Don Lincoln, “Quantum Field Theory” (in the public domain) Jan. 14, 2016; See the video below.]

The quantum world is a sublevel of reality in the same sense that computer programmers work at a sublevel of a video game. Before they key the program into the computer and see the “macroscopic” world that they’ve created, they follow rules different from those that the characters in the video game follow. The programmers can program a character to exit screen left and enter screen right—no need to traverse the distance in between. The programmers can correct an action in an earlier “frame”–no need to go back in time—they just re-type some symbols.

Later, when the game is actually playing on the screen, the characters follow different rules, more like those of our macroscopic world. For example, a character in a video game can’t correct one of her actions by going back in time (unless it’s a sci fi game).

[For more detail on the idea of the quantum world as a sublevel of reality, see this excellent short video by Fermilab. Also see the entry for quantum field theory in the quantum physics encyclopedia for laypeople QuantumPhysicsLady.org.]

Some interpretations of QM are better than others at logical descriptions of reality. The Copenhagen Interpretation, the original interpretation, doesn’t even try. The slogan of this interpretation has come to be known as “Shut up and calculate!” In other words, physicists use the highly useful math of QM in developing things like computer technology but don’t worry about the implications for the nature of reality. They know that the implications are self-consistent if we confine our attention to the quantum world; but they’re not consistent with the laws of Newton that describe our experiences in the macroscopic world of tables and chairs.

The Transactional Interpretation* does well at providing a logical description of reality. In describing QM as describing a sublevel of reality, I’ve relied on this interpretation.

In short, QM follows its own logic. As long as we don’t make assumptions based on our everyday experience or on classical physics, QM makes logical sense of experimental results.

* See the book: Ruth E. Kastner, *Understanding Our Unseen Reality.*

The post Can quantum mechanics be understood? Does it make logical sense? appeared first on Quantum Physics Lady.

]]>The post Why study quantum physics? appeared first on Quantum Physics Lady.

]]>Quantum physics is part of the answer—a huge part. But the trouble is, physicists don’t understand how quantum particles create the solid objects that our senses perceive. After all, quantum particles are just vibrations in what appears to be huge quantities of empty space.

Many physicists are unperturbed by this question. They use the mathematics of quantum physics for running experiments or for developing technologies, and they leave the Big Questions alone. However, some physicists/mathematicians have gone ahead and speculated about the Big Questions.

One speculation of particular interest to me is that Information Theory can cast light on this question. Information Theory reduces the universe to mathematical patterns. It reduces the vibrations of quantum particles to the mathematical equations which calculate the vibrations. These equations describe **changes** in matter and energy, what physicists call “evolutions.” The equations are not just static descriptions like the formula for the composition of water: H_{2}O.

The entire universe can be seen as an intermeshing of equations, one supplying data to another, each equation being influenced by others. The physicist, Max Tegmark, wrote the book *Our Mathematical Universe *on this premise. Another good book on the subject is *Programming the Universe *by one of the inventors of the quantum computer, Seth Lloyd.

Information Theory is illuminating. But there’s a big piece of the puzzle that’s still missing. How do mathematical equations become subjective experience? We experience colors, sounds, tastes, and other sensations as if they were out in the world. But, actually, these are our subjective experiences of electrical impulses in the brain. After all, our skulls don’t have holes in them to let the world in. The only thing going on in our brains are electrical impulses.

Here’s whereBut, how exactly, do we experience electrical impulses traveling through the brain as colors, sounds, tastes, and so on? **How do mathematical equations become subjective experience?**

The quantum physicist, Amit Gswami in *The Self-Aware Universe*, suggests how this happens. He proposes that our consciousness codes equations into the images, sounds, smells, and tastes of our subjective experience. In other words, the world is really in our minds. Or possibly, there is one mind, and we’re all tuned into it, each one of us experiencing it somewhat differently due to our own unique filters. The traditional Buddhist view has things to say about this.

*“I regard consciousness as fundamental. I regard matter as derivative from consciousness. We cannot get behind consciousness. Everything that we talk about, everything that we regard as existing, postulates consciousness.”*

Rene Descartes proposed another view called “Dualism” in the 1600’s. He saw both matter and consciousness as fundamental but also as very different substances. Dualism formed one of the basic unspoken assumptions of the worldview that I grew up with and probably most Westerners have grown up with. It is the worldview that most Westerners who aren’t paid to think, unthinkingly adopt.

Starting in the middle of the 20The post Why study quantum physics? appeared first on Quantum Physics Lady.

]]>The post What is the relationship between quantum physics and consciousness? appeared first on Quantum Physics Lady.

]]>**The Universe Works in Accordance with Math **

A basic principle of quantum physics is that elementary particles like electrons can be completely described mathematically.* For example, an electron has a charge of minus 1, a mass of 1/1836 that of the proton, and so on. Every electron is identical to every other electron and can be described by these same numbers. You don’t need a sample of an electron to give it a complete description. It’s as if electrons are just pieces of math. The same is true for every photon (a particle of light), every proton (a particle of matter), and so on for all the tiniest particles of matter and energy.

This isn’t like the flavor of a cherry or the color of a sunflower. No amount of mathematical description would suffice to communicate how a cherry tastes nor how the color of a sunflower looks. For these, you need to provide a sample which can be experienced.

A cherry is made up solely of electrons, protons, photons, etc. And these tiny bits are just a bunch of math. So, why does the flavor of a cherry go beyond math? Why do we have the physical experience of the sharp, sweet taste of a cherry? A spiritual interpretation would be that the cherry taste is the conscious experience of quantum-level mathematical descriptions. It is the experience that our consciousness assigns to a particular mathematical expression.

The same is true for color. The yellow color of the sunflower is not inherent in the photons coming from the sunflower. Photons which have a middle-range frequency shoot from the sunflower into our eyes.* These photons are vibrating very quickly, but they’re not vibrating very “yellowly.” Photons which have the right frequency stimulate our brains and create a specific brainwave pattern. And consciousness experiences that brainwave pattern as yellow.

The mathematical descriptions of electrons, photons, and their interactions are like the mathematics of computer code. This mathematical coding shows up as pixels lighting up on a computer screen. And consciousness looks at the screen and experiences, for example, characters shooting each other in a video game. That mathematical coding creates physical reality is the premise of the movie, “The Matrix.”

Going further, one can ask, who or what created all the mathematics that describes quantum particles and their interactions? One possible answer is: no one, it’s all just an incredible series of accidents. Another answer is that God is a mathematician. (Or one can substitute for “God” whatever name one wants to call the consciousness of all that is.) The notion that physical reality accords with mathematics and arises from consciousness was popular among early quantum physicists. Max Planck, Nobel Laureate, whose work launched the field of quantum physics, expressed this in a famous quote (see illustration).

We live in a physical universe that many physicists believe will one day be fully described by mathematics. Yet, we don’t experience the physical universe as a bunch of mathematical expressions and equations. And we don’t experience it as computer code. Possibly, we perceive the math or the coding, and our consciousness gives it meaning—the sharp, sweet taste of the cherry and the yellow of the sunflower. It’s like a computer programmer creating a program for the video game that he can, then, play and experience.

Physics experiments have ruled out the possibility that the two electrons are pre-programmed. If the entangled particles were pre-programmed, they would come in matched pairs, like if one glove is for the right hand, the other, of course, is for the left. However, experiments have ruled out this explanation. Physicists have not come up with a theory to explain entanglement. Possibly, such a theory could derive from the spiritual principle that, at bottom, all things are one.

Several other key aspects of quantum physics fit well with spiritual principles. Perhaps, the most important is that quantum particles are in a state of potentiality, possibly having this property and possibly becoming having that property, until they interact with some aspect of the physical universe. Only then, do they enter our physical reality as a particle with definite properties. This aspect of quantum physics may connect with the spiritual idea that our intentions, conscious or subconscious, causes potential realities to manifest. For more on this aspect of quantum physics, read about Quantum Field Theory.

But I would like to address a misinterpretation of quantum physics that some people say “proves” that human consciousness is essential to the existence of matter and energy.

Sometimes, people say that the importance of the “observer” in quantum physics tells us that without human consciousness, quantum particles would not have physical reality. As quantum particles are the sub-microscopic level of matter and energy, this requires that the physical reality of matter and energy depends upon human consciousness.

This kind of statement is based on a misunderstanding of the term “observer.” Quantum physicists use the term “observer” to mean something that a quantum particle interacts with. This might be a particle in the experimenter’s eye or just another quantum particle. For example, when a photon (a particle of light) is absorbed by an electron (a particle of matter), an exchange of information and energy occur: the photon disappears, and the electron becomes more active. When this happens in a solar panel, electricity is generated. The physicist would say that the electron is the observer and has “observed” the photon. Odd terminology, I know.

Prior to the absorption of the photon by the electron, the photon has no specific position in the universe and has other undetermined properties. Upon absorption by the electron, its position and other physical properties become concrete. They become a part of the history of the physical universe. So, the role of the observer in quantum physics is critical to creating physical existence, but the observer need not involve human consciousness.***

Principles of quantum physics do not **prove** that human consciousness or any consciousness is essential to creation of our physical universe. But some of the principles of quantum physics accord well with certain basic spiritual principles of Buddhism and New Age philosophies.

*Yellow light is electromagnetic radiation with a frequency of 510-540 Terahertz. Terahertz means 10 to the power of 12 oscillations per second. Suffice it to say, that’s many, many.

**For more information, read *Our Mathematical Universe* by noted quantum physicist, Max Tegmark.

*** For more information, read *Understanding Our Unseen Reality: Solving Quantum Riddles*, by Ruth E. Kastner, quantum physicist.

The post What is the relationship between quantum physics and consciousness? appeared first on Quantum Physics Lady.

]]>